metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Xiao-Qing Cai, Li-Xue Zhang, Guang-qi Xiang, An-Jiang Zhang and Mao-Lin Hu*

Department of Chemistry and Materials Science, Wenzhou Normal College, Wenzhou 325027, People's Republic of China

Correspondence e-mail: hu403cn@yahoo.com.cn

Key indicators

Single-crystal X-ray study T = 298 K Mean σ (C–C) = 0.002 Å R factor = 0.025 wR factor = 0.067 Data-to-parameter ratio = 13.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Bis[4-amino-3-methyl-1*H*-1,2,4-triazole-5(4*H*)-thione]dichlorocopper(II) dihydrate

In the title compound, $[Cu(amt)_2Cl_2]\cdot 2H_2O$, where amt is 4amino-1,2,4-triazole-5-thione $(C_3H_6N_4S)$, the Cu^{II} atom is surrounded by two N atoms, two S atoms from two amt ligands, and two Cl ions, forming a distorted $CuCl_2N_2S_2$ octahedron. The copper complex, with the Cu^{II} cation located on a center of inversion, and solvent water molecules are connected together by five kinds of intermolecular hydrogen bonds, leading to the formation of a three-dimensional network structure.

Comment

1,2,4-Triazole and its derivatives display a broad range of biological activity, finding application as antitumor, antibacterial, antifungal and antiviral agents (Jantova *et al.*, 1998; Holla *et al.*, 1996). Although complexes of these ligands have been reported for a variety of transition metals, relatively few crystal structures of such complexes have been published (Jha *et al.*, 1994; Dubey *et al.*, 1994). Because of the potential applications of these compounds, we focused our attention on synthesizing them, using 1,2,4-triazole derivatives. We present here the structure of the title compound, $[Cu(amt)_2Cl_2]\cdot 2H_2O$, (I).

In (I), two amt ligands coordinate to the Cu^{II} atom through two amino N atoms and two thiocarbonyl S atoms. Each Cu^{II} atom, on an inversion center, is at the center of a distorted octahedron, with a distinct Jahn–Teller effect (Fig. 1). The equatorial plane consists of two amino N atoms and two S atoms from two amt ligands. The two axial positions are filled by two Cl anions. The Cu atom is located on the plane C1/C2/ C3/N1/N2/N3/N4/S1; the r.m.s. deviation from the plane is 0.0277 Å. In the crystal structure, there are five kinds of intermolecular hydrogen bonds with H···A distances in the 1.86–2.54 Å range, linking the mononuclear units into a threedimensional network structure (Fig. 2 and Table 2).

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved Received 15 November 2004 Accepted 24 November 2004 Online 30 November 2004

Experimental

The title compound was synthesized by a hydrothermal method from a mixture of 4-amino-1,2,4-triazole-5-thione (2 mmol, 0.38 g), $CuCl_2\cdot 2H_2O$ (1 mmol, 0.17 g) and water (20 ml) in a 30 ml Teflon-lined stainless steel reactor. The solution was heated to 415 K for four days. After the reaction system was slowly cooled to room temperature, blue block-shaped crystals were collected and washed with distilled water.

 $D_x = 1.802 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation Cell parameters from 2880

 $0.37 \times 0.29 \times 0.26 \text{ mm}$

1427 independent reflections 1351 reflections with $I > 2\sigma(I)$

reflections $\theta = 2.5-25.2^{\circ}$ $\mu = 1.99 \text{ mm}^{-1}$ T = 298 (2) KBlock, blue

 $\begin{aligned} R_{\rm int} &= 0.016\\ \theta_{\rm max} &= 25.2^\circ \end{aligned}$

 $h=-7\rightarrow 11$

 $\begin{array}{l} k=-11 \rightarrow 11 \\ l=-10 \rightarrow 9 \end{array}$

Crystal data

$[Cu(C_3H_6N_4S)_2Cl_2]\cdot 2H_2O$
$M_r = 430.83$
Monoclinic, $P2_1/c$
a = 9.4614 (8) Å
$b = 10.0012 (9) \text{\AA}$
c = 8.4042 (7) Å
$\beta = 93.028 \ (2)^{\circ}$
$V = 794.14 (12) \text{ Å}^3$
Z = 2

Data collection

Bruker SMART APEX areadetector diffractometer φ and ω scans Absorption correction: multi-scan *SADABS*; Sheldrick, 1996 $T_{min} = 0.506, T_{max} = 0.606$ 4082 measured reflections

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0378P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.025$	+ 0.2591P]
$wR(F^2) = 0.067$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.12	$(\Delta/\sigma)_{\rm max} = 0.001$
1427 reflections	$\Delta \rho_{\rm max} = 0.26 \text{ e } \text{\AA}^{-3}$
104 parameters	$\Delta \rho_{\rm min} = -0.42 \text{ e} \text{ \AA}^{-3}$
H-atom parameters constrained	

Table 1

Selected geometric parameters (Å, °).

Cu1-N4	2.0519 (16)	Cu1-Cl1	2.9008 (5)
Cu1-S1	2.3223 (5)		
N4-Cu1-S1	89.03 (4)	S1-Cu1-Cl1	93.040 (17)
N4-Cu1-Cl1	92.93 (4)		

Table 2		
Undrogon	handing	~

Hydrogen-bonding geometry (A	, °)).
------------------------------	------	----

D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
0.86	1.86	2.706 (2)	169
0.90	2.54	3.3996 (17)	161
0.90	2.43	3.2893 (16)	161
0.807(15)	2.098 (15)	2.858 (2)	157 (2)
0.834 (15)	2.321 (15)	3.1543 (17)	177 (2)
	<i>D</i> -H 0.86 0.90 0.90 0.807 (15) 0.834 (15)	D-H H···A 0.86 1.86 0.90 2.54 0.90 2.43 0.807 (15) 2.098 (15) 0.834 (15) 2.321 (15)	D-H H···A D···A 0.86 1.86 2.706 (2) 0.90 2.54 3.3996 (17) 0.90 2.43 3.2893 (16) 0.807 (15) 2.098 (15) 2.858 (2) 0.834 (15) 2.321 (15) 3.1543 (17)

Symmetry codes: (i) $x, \frac{3}{2} - y, \frac{1}{2} + z$; (ii) $1 - x, y - \frac{1}{2}, \frac{3}{2} - z$; (iii) $x, \frac{5}{2} - y, z - \frac{1}{2}$; (iv) $2 - x, y - \frac{1}{2}, \frac{3}{2} - z$.

H atoms of the water molecule were located in a difference Fourier map and refined with O–H and H···H distances restrained to 0.82 (2) Å and 1.39 (1) Å, respectively, and with $U_{\rm iso} = 1.2U_{\rm eq}$ (parent atom). The other H atoms were positioned geometrically and allowed to ride on their parent atoms at distances of Csp^3 –H = 0.96 Å with

Figure 1

The coordination environment of the Cu^{II} ion in (I), with the atom numbering, showing displacement ellipsoids at the 50% probability level. Unlabeled atoms are related to labeled atoms by 1 - x, 2 - y, 2 - z.

The three-dimensional network formed by hydrogen bonds (shown as dashed lines).

 $U_{\rm iso}$ = 1.5 $U_{\rm eq}({\rm parent}$ atom), N–H = 0.86 or 0.90 Å with $U_{\rm iso}$ = 1.2 $U_{\rm eq}({\rm parent}$ atom).

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 2002); software used to prepare material for publication: *SHELXL*97 (Bruker, 2002).

We acknowledge financial support by the Wenzhou Technology Project Foundation of China (No. S2004A004) and the Zhejiang Provincial Natural Science Foundation of China (No. M 203149).

References

Bruker (2002). SAINT, SMART and SHELXTL. Bruker AXS Inc., Madison, Winsonsin, USA.

Dubey, S., Handa, R. & Vaid, B. (1994). Monatsh. Chem. 125, 395-398.

Holla, B., Poojary, K., Kalluraya, B. & Gowda, P. (1996). Farmaco, 51, 793–799. Jantova, S., Greif, G., Paviovicova, R. & Cipak, L. (1998). Folia Microbiol. (Prague), 43, 75–80.

Jha, R., Sircar, D., Sadanand. & Jha, U. (1994). Asian J. Chem. 6, 468-472.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.